

Direct Synthesis of Dimethyl Carbonate (DMC) from Methanol and CO₂

CO₂ Utilization Routes

Main uses of DMC: DMC is a versatile non toxic solvent • Used as solvent in polycarbonate and PU industry • Used as fuel additive for gasoline/diesel DMC can boost density and RON of the GTL fuels

name	abbrev	MW	mp (°C)	bp (°C
dimethyl carbonate	DMC	90	1	90
Table 6. Range of Alkyl Carbonate Gasoline Blending Values at 3–5 vol %				
I	RON MON	approx K	? + <i>M</i> /2	
dimethyl carbonate 12	5-131 100-10)9 11	6	-
dimethyl carbonate 12	RON MON 5-131 100-10	approx <i>F</i>)9 11	2 + <i>M</i> /2 6	<u>×</u>

GAS & FUELS RESEARCH CENTER

ORYX GTL Gas-to-Liquid Excellence Program

DMC synthesis by CO2

 $2CH_3OH(I) + CO_2(g) \leftrightarrow CO(OCH_3)_2(I) + 2H_2O(I)$

Challenges with DMC synthesis

 $2CH_3OH + CO_2 \leftrightarrow CO(OCH_3)_2 + 2H_2O$

- Pressure has a positive effect on conversion ۲
- **Temperature has negative effect on conversion**
- **Reaction temperature more than 120 oC decreases MeOH conversion**
- Water scavengers can help increase the conversion
- 2,2-dimethoxypropane (DMP) and dicyclohexylcarbodiimide ۲ (DCC) are reported (water scavengers)
- Reusability of scavengers and catalyst regeneration is a big concern and ٠ expensive
- Max MeOH conversion is 17% and DMC selectivity of 7% ۲

Objectives

New process can be designed with :

- Cheap alternatives to 2-cyanopyradine for a sustainable option
- Use ion exchange resins as catalyst instead of metal oxide
 - Ion exchange resins can be operated in low temp range and high pressure
 - Catalyst regeneration is very economic and simple
- **Optimized separation sequence developed in Hysys/Aspen Plus**
- Incorporating new design by retrofitting a DMC plant in existing infrastructure in Qatar
- Utilizing MeOH and CO₂ to minimize C-footprint of Qatar
- Blending DMC with GTL Gasoline and Naphtha for a sustainable fuel mix for Qatar

Projected Project Flow

ROI, CAPEX,CO₂ equivalence

Thank you

